Lingnan Modern Clinics in Surgery ›› 2020, Vol. 20 ›› Issue (04): 540-544.DOI: 10.3969/j.issn.1009-976X.2020.04.030
• Review • Previous Articles
LIU Xiang-mei, XU Wei-guo
Contact:
XU Wei-guo, maymimi860@gmail.com
刘想梅1, 徐卫国1,*
通讯作者:
*徐卫国,主任医师,教授,华北理工大学附属医院肿瘤外科,Email: maymimi860@gmail.com
基金资助:CLC Number:
LIU Xiang-mei, XU Wei-guo. Multifunctional mechanism of neuropilins in tumor[J]. Lingnan Modern Clinics in Surgery, 2020, 20(04): 540-544.
刘想梅, 徐卫国. Neuropilins在肿瘤中的多功能作用机制[J]. 岭南现代临床外科, 2020, 20(04): 540-544.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.lingnanwaike.com/EN/10.3969/j.issn.1009-976X.2020.04.030
| [1] Narayanan N, Su N, Bedard P.Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum[J]. Biochim Biophys Acta, 1991, 1070(1): 83-91. [2] Nakamura F, Goshima Y.Structural and functional relation of neuropilins[J]. Adv Exp Med Biol, 2002, 515: 55-69. [3] Bagci T, Wu JK, Pfannl R, et al.Autocrine semaphorin 3A signaling promotes glioblastoma dispersal[J]. Oncogene, 2009, 28(40): 3537-3550. [4] Hu B, Guo P, Bar-Joseph I, et al.Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway[J]. Oncogene, 2007, 26(38): 5577-5586. [5] Yaqoob U, Cao S, Shergill U, et al.Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment[J]. Cancer Res, 2012, 72(16): 4047-4059. [6] Gurrapu S, Tamagnone L.Semaphorins as Regulators of Phenotypic Plasticity and Functional Reprogramming of Cancer Cells[J]. Trend Mol Med, 2019, 25(4): 303-314. [7] Das V, Bhattacharya S, Chikkaputtaiah C, et al.The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective[J]. J Cell Physiol, 2019. doi: 10.1002/jcp.28160. [8] Matkar PN, Jong ED, Ariyagunarajah R, et al.Jack of many trades: Multifaceted role of neuropilins in pancreatic cancer[J]. Cancer Med, 2018, 7(10): 5036-5046. [9] Yamazaki K, Masugi Y, Sakamoto M.Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-beta signaling in hepatocarcinogenesis[J]. J Cell Biochem, 2011, 29(3): 284-288. [10] Rose M, Meurer SK, Kloten V, et al.ITIH5 induces a shift in TGF-beta superfamily signaling involving Endoglin and reduces risk for breast cancer metastasis and tumor death[J]. Mol Carcinog, 2018, 57(2): 167-181. [11] Goyette MA, Duhamel S, Aubert L, et al.The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression[J]. Cell Rep, 2018, 23(5): 1476-1490. [12] Xie F, Ling L, van Dam H, et al. TGF-beta signaling in cancer metastasis[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(1): 121-132. [13] Colak S, Ten Dijke P.Targeting TGF-beta Signaling in Cancer[J]. Trends cancer, 2017, 3(1): 56-71. [14] Tauriello DVF, Palomo-Ponce S, Stork D, et al.TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis[J]. Nature, 2018, 554(7693): 538-543. [15] Neuzillet C, Tijeras-Raballand A, Cohen R, et al.Targeting the TGFbeta pathway for cancer therapy[J]. Pharmacol Ther, 2015, 147: 22-31. [16] Zhao M, Mishra L, Deng CX.The role of TGF-beta/SMAD4 signaling in cancer[J]. Int J Biol Sci, 2018, 14(2): 111-123. [17] Levy L, Hill CS.Alterations in components of the TGF-beta superfamily signaling pathways in human cancer[J]. Cytokine Growth Factor Rev, 2006, 17(1-2): 41-58. [18] Ismaeel A, Kim JS, Kirk JS, et al.Role of Transforming Growth Factor-beta in Skeletal Muscle Fibrosis: A Review[J]. Int J Mol Sci, 2019, 20(10): 2446 [19] Plein A, Fantin A, Ruhrberg C.Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability[J]. Microcirculation, 2014, 21(4): 315-23. [20] Dhar K, Dhar G, Majumder M, et al.Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1[J]. Mol Cancer, 2010, 9: 209. [21] Ball SG, Bayley C, Shuttleworth CA, et al.Neuropilin-1 regulates platelet-derived growth factor receptor signalling in mesenchymal stem cells[J]. Biochem J, 2010, 427(1): 29-40. [22] Cao Y, Szabolcs A, Dutta S K, et al.Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype[J]. J Biol Chem, 2010, 285(41): 31840-3188. [23] Cao S, Yaqoob U, Das A, et al.Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells[J]. J Clin Invest, 2010, 120(7): 2379-2394. [24] Matkar PN, Singh KK, Rudenko D, et al.Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma[J]. Oncotarget, 2016, 7(43): 69489-69506. [25] Glinka Y, Prud'homme GJ. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity[J]. J Leukocyte Biol, 2008, 84(1): 302-310. [26] Wang Y, Cao Y, Yamada S, et al.Cardiomyopathy and Worsened Ischemic Heart Failure in SM22-alpha Cre-Mediated Neuropilin-1 Null Mice: Dysregulation of PGC1alpha and Mitochondrial Homeostasis[J]. Arterioscler Thromb Vasc Biol, 2015, 35(6): 1401-1412. [27] Kalluri R, Weinberg RA.The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428. [28] Lamouille S, Xu J, Derynck R.Molecular mechanisms of epithelial-mesenchymal transition[J]. Nature Rev Mol Cell Biol, 2014, 15(3): 178-196. [29] Vu T, Datta PK.Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis[J]. Cancers, 2017, 9(12): 171 [30] Sanchez-Tillo E, Liu Y, de Barrios O, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness[J]. Cell Mol Life Sci, 2012, 69(20): 3429-5346. [31] Zhang Y, Weinberg R A.Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. [32] Wittmann P, Grubinger M, Groger C, et al.Neuropilin-2 induced by transforming growth factor-beta augments migration of hepatocellular carcinoma cells[J]. BMC Cancer, 2015, 15: 909. [33] Nasarre P, Gemmill RM, Potiron VA, et al.Neuropilin-2 Is upregulated in lung cancer cells during TGF-beta1-induced epithelial-mesenchymal transition[J]. Cancer Res, 2013, 73(23): 7111-7121. [34] Grandclement C, Pallandre JR, Valmary Degano S, et al.Neuropilin-2 expression promotes TGF-beta1-mediated epithelial to mesenchymal transition in colorectal cancer cells[J]. PloS One, 2011, 6(7): e20444. [35] Clarke MF, Dick JE, Dirks PB, et al.Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells[J]. Cancer Res, 2006, 66(19): 9339-9344. [36] Lapidot T, Sirard C, Vormoor J, et al.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. [37] Ishihara E, Takahashi S, Fukaya R, et al.Identification of KLRC2 as a candidate marker for brain tumor-initiating cells[J]. Neurol Res, 2019, 41(11): 1043-1049. [38] Mani SA, Guo W, Liao MJ, et al.The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4): 704-715. [39] Jung HY, Fattet L, Yang J.Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis[J]. Clin Cancer Res, 2015, 21(5): 962-968. [40] Gong C, Valduga J, Chateau A, et al.Stimulation of medulloblastoma stem cells differentiation by a peptidomimetic targeting neuropilin-1[J]. Oncotarget, 2018, 9(20): 15312-15325. [41] Glinka Y, Mohammed N, Subramaniam V, et al.Neuropilin-1 is expressed by breast cancer stem-like cells and is linked to NF-kappa B activation and tumor sphere formation[J]. Biochem Biophys Res commun, 2012, 425(4): 775-780. [42] Chu W, Song X, Yang X, et al.Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma[J]. PLoS One, 2014, 9(7): e101931. [43] Liu W, Wu T, Dong X, et al.Neuropilin-1 is upregulated by Wnt/beta-catenin signaling and is important for mammary stem cells[J]. Sci Rep, 2017, 7(1): 10941. [44] Siegle JM, Basin A, Sastre-Perona A, et al.SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma[J]. Nat Commun, 2014, 5: 4511. [45] Liu Q, Xu Y, Wei S, et al.miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1[J]. Biosci Rep, 2015, 35(4): e00229. [46] Hamerlik P, Lathia JD, Rasmussen R, et al.Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth[J]. J Exp Med, 2012, 209(3): 507-520. [47] Goel HL, Pursell B, Chang C, et al.GLI1 regulates a novel neuropilin-2/alpha 6 beta 1 integrin based autocrine pathway that contributes to breast cancer initiation[J]. EMBO Mol Med, 2013, 5(4): 488-508. [48] Goel HL, Pursell B, Shultz LD, et al.P-Rex1 Promotes Resistance to VEGF/VEGFR-Targeted Therapy in Prostate Cancer[J]. Cell Rep, 2016, 14(9): 2193-208. [49] Goel HL, Gritsko T, Pursell B, et al.Regulated splicing of the alpha6 integrin cytoplasmic domain determines the fate of breast cancer stem cells[J]. Cell Rep, 2014, 7(3): 747-761. [50] Lambert AW, Pattabiraman DR, Weinberg RA.Emerging Biological Principles of Metastasis[J]. Cell, 2017, 168(4): 670-691. [51] Noumi T, Ishizaki M, Tanioka H, et al.A Case of Long-Term Survival after Para-Aortic Lymph Node Recurrence Following the Curative Resection of Gastric Cancer Treated Using Multimodality Therapy Including Salvage Surgery[J]. Kagaku Ryoho, 2019, 46(13): 2072-2074. [52] Pan JX, Wang F, Ye LY.Doxorubicin-induced epithelial-mesenchymal transition through SEMA 4A in hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2016, 479(4): 610-614. [53] Zhang L, Wang H, Li C, et al.VEGF-A/Neuropilin 1 Pathway Confers Cancer Stemness via Activating Wnt/beta-Catenin Axis in Breast Cancer Cells[J]. Cell Physiol Biochem, 2017, 44(3): 1251-1262. [54] Yue B, Ma JF, Yao G, et al.Knockdown of neuropilin-1 suppresses invasion, angiogenesis, and increases the chemosensitivity to doxorubicin in osteosarcoma cells - an in vitro study[J]. Eur Rev Med Pharmacol Sci, 2014, 18(12): 1735-1741. [55] Kamarulzaman EE, Vanderesse R, Gazzali AM, et al.Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application[J]. J Biomol Struct Dyn, 2017, 35(1): 26-45. [56] Dong JC, Gao H, Zuo SY, et al.Neuropilin 1 expression correlates with the Radio-resistance of human non-small-cell lung cancer cells[J]. J Cell Mol Med, 2015, 19(9): 2286-2295. [57] Pagani E, Ruffini F, Antonini Cappellini GC, et al.Placenta growth factor and neuropilin-1 collaborate in promoting melanoma aggressiveness[J]. Int J Oncol, 2016, 48(4): 1581-1589. [58] Kim YJ, Jung K, Baek DS, et al.Co-targeting of EGF receptor and neuropilin-1 overcomes cetuximab resistance in pancreatic ductal adenocarcinoma with integrin beta1-driven Src-Akt bypass signaling[J]. Oncogene, 2017, 36(18): 2543-2552. [59] Rizzolio S, Cagnoni G, Battistini C, et al.Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies[J]. J Clin Invest, 2018, 128(9): 3976-3990. [60] Rizzolio S, Battistini C, Cagnoni G, et al.Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Oncogene-Targeted Therapies[J]. Cancer Res, 2018, 78(4): 1058-68. |
| [1] | TAN Yong, LIU Hui, WU Li-ming, LIU Wen-ying, OU-YANG Zai-xing, HU Le-sheng, SONG Hao, HUANG Cong-yun, WU Qing-song. The relationship between preoperative serum hepatitis B virus DNA load and postoperative liver function in patients with hepatocellular carcinoma resection [J]. Lingnan Modern Clinics In Surgery, 2024, 24(04): 209-214. |
| [2] | REN Xue-kang, ZHU Shao-gong, XIA Yun-zhan. Relationship between glomerular filtration rate and clinical stage and prognosis of primary gastric adenocarcinoma [J]. Lingnan Modern Clinics In Surgery, 2024, 24(04): 244-248. |
| [3] | LIU Li-qiang, LI Wen-bin, YE Hui-lin. Prediction of prognosis of pancreatic cancer patients after operation by enhanced CT extracellular volume fraction [J]. Lingnan Modern Clinics In Surgery, 2024, 24(03): 141-149. |
| [4] | HAN Zhi-ren, ZHU Xiang-ping, HAN Bei-nan, WENG Hai-yan, YANG Qiong. Exploring the causal relationship between MMPs and breast cancer risk: a Mendelian randomization study [J]. Lingnan Modern Clinics In Surgery, 2024, 24(03): 162-174. |
| [5] | WU Shao-cong, SHEN Run-nan, WANG Liang-yu, WU Shao-xu. Development of a multimodal artificial intelligence diagnostic model for bladder cancer based on ultrasound imaging and urine cytology [J]. Lingnan Modern Clinics In Surgery, 2024, 24(03): 175-182. |
| [6] | ZHANG Yang-yi, DING Luo-zhou, LUO Hong-li, LIU Ce, REN Jia, MA Sheng-hui. Exploration of the effect of applying nanocarbon suspension injection in thyroid cancer surgery [J]. Lingnan Modern Clinics In Surgery, 2024, 24(03): 183-186. |
| [7] | WU Hui-qian, NI Heng-li, ZHOU Ai-jun, YUAN Hang, LI Jian-ming. Tumor infiltrating lymphocytes predict the efficacy of neoadjuvant chemotherapy for breast cancer [J]. Lingnan Modern Clinics In Surgery, 2024, 24(02): 100-105. |
| [8] | PENG Lin-hui, CHEN Tao, XU Yun-xiu-xiu, WANG Jie, CHEN Jie, LI Yong, HUANG Pin-bo, ZHONG Guo-ping, CHEN Qian, YE Cong-ting, CHEN Ya-jin. mFOLFOX7 venous chemotherapy plus camrelizumab and apatinib for hepatocellular carcinoma in CNLC stage Ⅲ (VIC-TRIPLET): a prospective study [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 1-6. |
| [9] | LUO Wan-rong, ZHANG Wen-yue, LUO Bao-ming. Construction and validation of a prognostic risk model for hepatocellular carcinoma based on angiogenesis-related lncRNAs [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 7-13. |
| [10] | LIN Kun-peng, BA Ming-chen, TANG Yun-qiang, WANG Jia-kang, LIN Xiao-chun. Correlation analysis of FAM72 gene family in prognosis and immune infiltration of hepatocellular carcinoma [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 14-25. |
| [11] | LUO Hong-cheng, ZHANG Jia-hao, HE Zhao-hui. Construction of a bladder cancer prognostic risk model based on DNA damage repair and its application in predicting the effectiveness of immunotherapy [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 26-36. |
| [12] | YANG Li-bin, XU Han-biao, YANG Hai-chao, ZHONG Ji-sheng, LIAO Zhen-wen. Study on the diagnostic value of preoperative urinary BTA and NMP22 quantitative detection in bladder cancer [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 37-41. |
| [13] | DONG Yi-ming, SHI Chuan-ping, LIAO Jian-you. Effects of knockdown BRIX1 on proliferation, migration and invasion of triple negative breast cancer cells [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 42-48. |
| [14] | WU Wen-xia, ZHANG Meng. The effect of metabolic syndrome on prognosis of non-triple negative breast cancer [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 49-53. |
| [15] | YAN Shan-shan, LEI Wen, LI Shuai-jie, WANG Yong-nan. Prognostic value of HIST1H4F gene methylation in triple-negative breast cancer [J]. Lingnan Modern Clinics In Surgery, 2024, 24(01): 54-58. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||