[1] Deboever N, Jones CM, Yamashita K, et al.Advances in diagnosis and management of cancer of the esophagus[J]. BMJ, 2024, 385: e074962. [2] Wong CN, Zhang Y, Ru B, et al.Identification and Characterization of Metastasis-Initiating Cells in ESCC in a Multi-Timepoint Pulmonary Metastasis Mouse Model[J]. Adv Sci (Weinh), 2024, 11(30): e2401590. [3] Cao K, Zhu J, Lu M, et al.Analysis of multiple programmed cell death-related prognostic genes and functional validations of necroptosis-associated genes in oesophageal squamous cell carcinoma[J]. EBioMedicine, 2024, 99: 104920. [4] Yin Y, Wang Y, Yu X, et al.Spatial Isoforms Reveal the Mechanisms of Metastasis[J]. Adv Sci (Weinh), 2024, 11(43): e2402242. [5] Chen YY, Wang PP, Hu Y, et al.Clinical efficacy and immune response of neoadjuvant camrelizumab plus chemotherapy in resectable locally advanced oesophageal squamous cell carcinoma: a phase 2 trial[J]. Br J Cancer, 2024, 131(7): 1126-1136. [6] Habu T, Kumagai S, Bando H, et al.Definitive chemoradiotherapy induces T-cell-inflamed tumor microenvironment in unresectable locally advanced esophageal squamous cell carcinoma[J]. J Gastroenterol, 2024, 59(9): 798-811. [7] Li R, Huang B, Tian H, Sun Z.Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment[J]. Front Oncol, 2022, 12: 1096717. [8] Hinshaw DC, Shevde LA.The Tumor Microenvironment Innately Modulates Cancer Progression[J]. Cancer Res, 2019, 79(18): 4557-4566. [9] Xiao Y, Yu D.Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753. [10] Anderson NR, Minutolo NG, Gill S, Klichinsky M.Macrophage-Based Approaches for Cancer Immunotherapy[J]. Cancer Res, 2021, 81(5): 1201-1208. [11] Kloosterman DJ, Akkari L.Macrophages at the interface of the co-evolving cancer ecosystem[J]. Cell, 2023, 186(8): 1627-1651. [12] Ostuni R, Kratochvill F, Murray PJ, Natoli G.Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36(4): 229-239. [13] Yuan A, Hsiao YJ, Chen HY, et al.Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression[J]. Sci Rep, 2015, 5: 14273. [14] Gunassekaran GR, Poongkavithai Vadevoo SM, Baek MC, Lee B.M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages[J]. Biomaterials, 2021, 278: 121137. [15] Zhou Z, Peng Y, Wu X, et al.Correction to: CCL18 secreted from M2 macrophages promotes migration and invasion via the PI3K/Akt pathway in gallbladder cancer[J]. Cell Oncol (Dordr), 2022, 45(5): 1037-1041. [16] Sun J, Feng Q, He Y, et al.Lactate activates CCL18 expression via H3K18 lactylation in macrophages to promote tumorigenesis of ovarian cancer[J]. Acta Biochim Biophys Sin (Shanghai), 2024, 56(9): 1373-1386. [17] Chen Y, Zhang S, Wang Q, Zhang X.Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein[J]. J Hematol Oncol, 2017, 10(1): 36. [18] Gao J, Liang Y, Wang L.Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy[J]. Front Immunol, 2022, 13: 888713. [19] Yang H, Zhang Q, Xu M, et al.CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1): 41. [20] Zhao W, Liang Z, Yao Y, et al.GGT5: a potential immunotherapy response inhibitor in gastric cancer by modulating GSH metabolism and sustaining memory CD8+ T cell infiltration[J]. Cancer Immunol Immunother, 2024, 73(7): 131. [21] Gallman AE, Wolfreys FD, Nguyen DN, et al.Abcc1 and Ggt5 support lymphocyte guidance through export and catabolism of S-geranylgeranyl-l-glutathione[J]. Sci Immunol, 2021, 6(60). [22] Tian S, Li J, Guo Y, et al.Expression Status and Prognostic Significance of Gamma-Glutamyl Transpeptidase Family Genes in Hepatocellular Carcinoma[J]. Front Oncol, 2021, 11: 731144. [23] Tsuji T, Yamada K, Kunieda T.Characterization of the dwg mutations: dwg and dwg(Bayer) are new mutant alleles of the Ggt1 gene[J]. Mamm Genome, 2009, 20(11-12): 711-719. [24] Heisterkamp N, Groffen J, Warburton D, Sneddon TP.The human gamma-glutamyltransferase gene family[J]. Hum Genet, 2008, 123(4): 321-332. [25] Yunna C, Mengru H, Lei W, Weidong C.Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. [26] Mantovani A, Sozzani S, Locati M, et al.Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends Immunol, 2002, 23(11): 549-555. [27] Luo Z, Chen Y, Chen B, et al.GGT5 facilitates migration and invasion through the induction of epithelial-mesenchymal transformation in gastric cancer[J]. BMC Med Genomics, 2024, 17(1): 82. [28] Pompella A, De Tata V, Paolicchi A, Zunino F.Expression of gamma-glutamyltransferase in cancer cells and its significance in drug resistance[J]. Biochem Pharmacol, 2006, 71(3): 231-238. [29] Paolicchi A, Dominici S, Pieri L, et al.Glutathione catabolism as a signaling mechanism[J]. Biochem Pharmacol, 2002, 64(5-6): 1027-1035. [30] Muraoka M, Yoshida S, Ohno M, et al.Reactivity of γ-glutamyl-cysteine with intracellular and extracellular glutathione metabolic enzymes[J]. FEBS Lett, 2022, 596(2): 180-188. [31] Franco R, Cidlowski JA.Glutathione efflux and cell death[J]. Antioxid Redox Signal, 2012, 17(12): 1694-1713. [32] Cui XY, Park SH, Park WH.Anti-Cancer Effects of Auranofin in Human Lung Cancer Cells by Increasing Intracellular ROS Levels and Depleting GSH Levels[J]. Molecules, 2022, 27(16):5207. [33] He W, Cao P, Xia Y, et al.Potent inhibition of gastric cancer cells by a natural compound via inhibiting TrxR1 activity and activating ROS-mediated p38 MAPK pathway[J]. Free Radic Res, 2019, 53(1): 104-114. [34] Mitrić A, Castellano I.Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis[J]. Free Radic Biol Med, 2023, 208: 672-683. [35] Zhang T, Yao C, Zhou X, et al.Glutathione-degrading enzymes in the complex landscape of tumors (Review)[J]. Int J Oncol, 2024, 65(1):72. [36] Morris G, Anderson G, Dean O, et al.The glutathione system: a new drug target in neuroimmune disorders[J]. Mol Neurobiol, 2014, 50(3): 1059-1084. [37] Zhang J, Muri J, Fitzgerald G, et al. Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization[J]. Cell Metab, 2020, 31(6): 1136-1153.e1137. [38] Craig VJ, Zhang L, Hagood JS, Owen CA.Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2015, 53(5): 585-600. [39] Cai G, Lu Y, Zhong W, et al.Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1[J]. Cell Prolif, 2023, 56(9): e13440. [40] Yamaguchi Y, Gibson J, Ou K, et al.PD-L1 blockade restores CAR T cell activity through IFN-γ-regulation of CD163+ M2 macrophages[J]. J Immunother Cancer, 2022, 10(6):e004400. [41] Wu H, Li ZX, Fang K, et al.IGF-1-mediated FOXC1 overexpression induces stem-like properties through upregulating CBX7 and IGF-1R in esophageal squamous cell carcinoma[J]. Cell Death Discov, 2024, 10(1): 102. |