岭南现代临床外科 ›› 2025, Vol. 24 ›› Issue (06): 398-409.DOI: 10.3969/j.issn.1009-976X.2024.06.011
• 综述 • 上一篇
李栋泉, 黄山河, 黄海*, 谢锐辉*
通讯作者:
* 黄海,Email:huangh9@mail.sysu.edu.cn;谢锐辉,Email:xierh23@mail.sysu.edu.cn
作者简介:作者简介 # Co-first author#共同第一作者
基金资助:LI Dong-quan, HUANG Shan-he, HUANG Hai, XIE Rui-hui
Received:2024-12-10
Online:2024-12-20
Published:2025-01-14
Contact:
HUANG Hai, huangh9@mail.sysu.edu.cn; XIE Rui-hui, xierh23@mail.sysu.edu.cn
摘要: 肿瘤代谢重编程在前列腺癌发生发展过程中发挥关键调控作用。代谢改变除了受到肿瘤突变、表观遗传修饰等机制的作用,肿瘤微环境与肿瘤细胞之间的复杂交互作用是驱动前列腺癌代谢重编程进而导致肿瘤恶性进展和治疗失败的重要因素。肿瘤微环境通过其中的免疫细胞(如巨噬细胞、淋巴细胞和自然杀伤细胞等)、非免疫细胞(如成纤维细胞和内皮细胞等)以及细胞外基质成分和可溶性因子,与肿瘤细胞的持续交互作用导致代谢竞争和共生,诱导了肿瘤细胞代谢重编程,同时重塑了邻近细胞的代谢特征,导致前列腺癌的发生发展。靶向前列腺癌及其微环境的代谢重编程是改善前列腺癌治疗困境的重要策略。本文综述了目前关于前列腺癌代谢重编程及微环境中代谢相互作用的相关研究,以期提高对代谢重编程如何调节前列腺癌进展和治疗失败机制的理解,为针对代谢靶点的新型抗癌治疗方式提供新的策略。
中图分类号:
李栋泉, 黄山河, 黄海, 谢锐辉. 肿瘤微环境介导代谢重编程在前列腺癌中的研究进展[J]. 岭南现代临床外科, 2025, 24(06): 398-409.
LI Dong-quan, HUANG Shan-he, HUANG Hai, XIE Rui-hui. Tumor microenvironment-mediated metabolic reprogramming in prostate cancer:from mechanisms to therapeutics[J]. Lingnan Modern Clinics In Surgery, 2025, 24(06): 398-409.
| [1] Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Kang J, La Manna F, Bonollo F, et al.Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer[J]. Cancer Lett, 2022, 530: 156-169. [3] Hanahan D, Weinberg RA.Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. [4] Wang H, Wang X, Zhang X, et al.The promising role of tumor-associated macrophages in the treatment of cancer[J]. Drug Resist Updat, 2024, 73: 101041. [5] Shi F, Sun MH, Zhou Z, et al.Tumor-associated macrophages in direct contact with prostate cancer cells promote malignant proliferation and metastasis through NOTCH1 pathway[J]. Int J Biol Sci, 2022, 18(16): 5994-6007. [6] Hayashi T, Fujita K, Nojima S, et al.High-Fat Diet-Induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling[J]. Clin Cancer Res, 2018, 24(17): 4309-4318. [7] Masetti M, Carriero R, Portale F, et al.Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer[J]. J Exp Med, 2022, 219(2):e20210564. [8] Li XF, Selli C, Zhou HL, et al.Macrophages promote anti-androgen resistance in prostate cancer bone disease[J]. J Exp Med, 2023, 220(4): e20221007. [9] Lanciotti M, Masieri L, Raspollini MR, et al.The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy[J]. Biomed Res Int, 2014, 2014: 486798. [10] Zarif JC, Baena-Del Valle JA, Hicks JL, et al. Mannose Receptor-positive Macrophage Infiltration Correlates with Prostate Cancer Onset and Metastatic Castration-resistant Disease[J]. Eur Urol Oncol, 2019, 2(4): 429-436. [11] Movahedi K, Guilliams M, Van Den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity[J]. Blood, 2008, 111(8): 4233-4244. [12] Groth C, Hu X, Weber R, et al.Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression[J]. Br J Cancer, 2019, 120(1): 16-25. [13] Li N, Liu Q, Han Y, et al.ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression[J]. Nat Commun, 2022, 13(1): 7281. [14] Kiviaho A, Eerola SK, Kallio HML, et al.Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer[J]. Nat Commun, 2024, 15(1): 9949. [15] Wang D, Cheng C, Chen X, et al.IL-1β Is an Androgen-Responsive Target in Macrophages for Immunotherapy of Prostate Cancer[J]. Adv Sci (Weinh), 2023, 10(17): e2206889. [16] Lopez-Bujanda ZA, Haffner MC, Chaimowitz MG, et al.Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression[J]. Nat Cancer, 2021, 2(8): 803-818. [17] Calcinotto A, Spataro C, Zagato E, et al.IL-23 secreted by myeloid cells drives castration-resistant prostate cancer[J]. Nature, 2018, 559(7714): 363-369. [18] Vuk-Pavlović S, Bulur PA, Lin Y, et al.Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer[J]. Prostate, 2010, 70(4): 443-455. [19] Kobayashi T, Nagata M, Hachiya T, et al.Increased circulating polymorphonuclear myeloid-derived suppressor cells are associated with prognosis of metastatic castration-resistant prostate cancer[J]. Front Immunol, 2024, 15: 1372771. [20] Bronte G, Conteduca V, Landriscina M, et al.Circulating myeloid-derived suppressor cells and survival in prostate cancer patients: systematic review and meta-analysis[J]. Prostate Cancer Prostatic Dis, 2023, 26(1): 41-46. [21] Zhu Y, Zhao Y, Wen J, et al. Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer [J]. Sci Immunol, 2023, 8(81): eade4656. [22] Qi Z, Xu Z, Zhang L, et al.Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment[J]. Nat Commun, 2022, 13(1): 182. [23] Gao Z, Tao Y, Lai Y, et al.Immune Cytolytic Activity as an Indicator of Immune Checkpoint Inhibitors Treatment for Prostate Cancer[J]. Front Bioeng Biotechnol, 2020, 8: 930. [24] Gannot G, Richardson AM, Rodriguez-Canales J, et al.Decrease in CD8+ lymphocyte number and altered cytokine profile in human prostate cancer[J]. Am J Cancer Res, 2011, 1(1): 120-127. [25] Zhou Q, Li K, Lai Y, et al.B7 score and T cell infiltration stratify immune status in prostate cancer[J]. J Immunother Cancer, 2021, 9(8): e002455. [26] Guan X, Polesso F, Wang C, et al.Androgen receptor activity in T cells limits checkpoint blockade efficacy[J]. Nature, 2022, 606(7915): 791-796. [27] Cheng B, Huang H.Expanding horizons in overcoming therapeutic resistance in castration-resistant prostate cancer: targeting the androgen receptor-regulated tumor immune microenvironment[J]. Cancer Biol Med, 2023, 20(8): 568-574. [28] Basu A, Ramamoorthi G, Albert G, et al.Differentiation and Regulation of T(H) Cells: A Balancing Act for Cancer Immunotherapy[J]. Front Immunol, 2021, 12: 669474. [29] Sfanos KS, Bruno TC, Maris CH, et al.Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing[J]. Clin Cancer Res, 2008, 14(11): 3254-3261. [30] Li C, Jiang P, Wei S, et al.Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects[J]. Mol Cancer, 2020, 19(1): 116. [31] Su W, Han HH, Wang Y, et al. The Polycomb Repressor Complex 1 Drives Double-Negative Prostate Cancer Metastasis by Coordinating Stemness and Immune Suppression [J]. Cancer Cell, 2019, 36(2): 139-155.e10. [32] Davidsson S, Ohlson AL, Andersson SO, et al.CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3(+) regulatory T cells with respect to lethal prostate cancer[J]. Mod Pathol, 2013, 26(3): 448-455. [33] Jiao S, Subudhi SK, Aparicio A, et al. Differences in Tumor Microenvironment Dictate T Helper Lineage Polarization and Response to Immune Checkpoint Therapy [J]. Cell, 2019, 179(5): 1177-1190.e13. [34] Liu S, Rivero SL, Zhang B, et al.BATF-dependent Th17 cells act through the IL-23R pathway to promote prostate adenocarcinoma initiation and progression[J]. J Natl Cancer Inst, 2024, 116(10): 1598-1611. [35] Ge Q, Zhao Z, Li X, et al.Deciphering the suppressive immune microenvironment of prostate cancer based on CD4+ regulatory T cells: Implications for prognosis and therapy prediction[J]. Clin Transl Med, 2024, 14(1): e1552. [36] Morvan MG, Lanier LL.NK cells and cancer: you can teach innate cells new tricks[J]. Nat Rev Cancer, 2016, 16(1): 7-19. [37] Shimasaki N, Jain A, Campana D.NK cells for cancer immunotherapy[J]. Nat Rev Drug Discov, 2020, 19(3): 200-218. [38] Lin SJ, Chou FJ, Li L, et al.Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7)[J]. Cancer Lett, 2017, 398: 62-69. [39] Pasero C, Gravis G, Guerin M, et al.Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity[J]. Cancer Res, 2016, 76(8): 2153-2165. [40] Saga K, Park J, Nimura K, et al.NANOG helps cancer cells escape NK cell attack by downregulating ICAM1 during tumorigenesis[J]. J Exp Clin Cancer Res, 2019, 38(1): 416. [41] Portale F, Carriero R, Iovino M, et al.C/EBPβ-dependent autophagy inhibition hinders NK cell function in cancer[J]. Nat Commun, 2024, 15(1): 10343. [42] Solocinski K, Padget MR, Fabian KP, et al.Overcoming hypoxia-induced functional suppression of NK cells[J]. J Immunother Cancer, 2020, 8(1): e000246. [43] Caligiuri G, Tuveson DA.Activated fibroblasts in cancer: Perspectives and challenges[J]. Cancer Cell, 2023, 41(3): 434-449. [44] Owen JS, Clayton A, Pearson HB.Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer[J]. Biomolecules, 2022, 13(1): 67. [45] Xiong Z, Yu SL, Xie ZX, et al.Cancer-associated fibroblasts promote enzalutamide resistance and PD-L1 expression in prostate cancer through CCL5-CCR5 paracrine axis[J]. iScience, 2024, 27(5): 109674. [46] Zhang Z, Karthaus WR, Lee YS, et al. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer [J]. Cancer Cell, 2020, 38(2): 279-296.e9. [47] Wang H, Li N, Liu Q, et al. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer [J]. Cancer Cell, 2023, 41(7): 1345-1362.e9. [48] Zhang K, Liu K, Hu B, et al.Iron-loaded cancer-associated fibroblasts induce immunosuppression in prostate cancer[J]. Nat Commun, 2024, 15(1): 9050. [49] Shan G, Gu J, Zhou D, et al.Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway[J]. Exp Mol Med, 2020, 52(11): 1809-1822. [50] Wu Z, Shi J, Lai C, et al. Clinicopathological significance and prognostic value of cancer-associated fibroblasts in prostate cancer patients [J]. Urol Oncol, 2021, 39(7): 433.e17-.e23. [51] Ciummo SL, Sorrentino C, Fieni C, et al.Interleukin-30 subverts prostate cancer-endothelium crosstalk by fostering angiogenesis and activating immunoregulatory and oncogenic signaling pathways[J]. J Exp Clin Cancer Res, 2023, 42(1): 336. [52] Zhao R, Bei X, Yang B, et al.Endothelial cells promote metastasis of prostate cancer by enhancing autophagy[J]. J Exp Clin Cancer Res, 2018, 37(1): 221. [53] Chen S, Zhu G, Yang Y, et al.Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J]. Nat Cell Biol, 2021, 23(1): 87-98. [54] Zhou W, Su Y, Zhang Y, et al.Endothelial Cells Promote Docetaxel Resistance of Prostate Cancer Cells by Inducing ERG Expression and Activating Akt/mTOR Signaling Pathway[J]. Front Oncol, 2020, 10: 584505. [55] Cheng B, Li L, Wu Y, et al.The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment[J]. Cell Biosci, 2023, 13(1): 211. [56] Ren S, Shao Y, Zhao X, et al.Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer[J]. Mol Cell Proteomics, 2016, 15(1): 154-163. [57] Shao Y, Ye G, Ren S, et al.Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer[J]. Int J Cancer, 2018, 143(2): 396-407. [58] Lima AR, Carvalho M, Aveiro SS, et al.Comprehensive Metabolomics and Lipidomics Profiling of Prostate Cancer Tissue Reveals Metabolic Dysregulations Associated with Disease Development[J]. J Proteome Res, 2022, 21(3): 727-739. [59] Gómez-Cebrián N, García-Flores M, Rubio-Briones J, et al.Targeted Metabolomics Analyses Reveal Specific Metabolic Alterations in High-Grade Prostate Cancer Patients[J]. J Proteome Res, 2020, 19(10): 4082-4092. [60] Randall EC, Zadra G, Chetta P, et al.Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging[J]. Mol Cancer Res, 2019, 17(5): 1155-1165. [61] Dudka I, Lundquist K, Wikström P, et al.Metabolomic profiles of intact tissues reflect clinically relevant prostate cancer subtypes[J]. J Transl Med, 2023, 21(1): 860. [62] Zhang X, Xia B, Zheng H, et al.Identification of characteristic metabolic panels for different stages of prostate cancer by (1)H NMR-based metabolomics analysis[J]. J Transl Med, 2022, 20(1): 275. [63] Vander Heiden MG, Cantley LC, Thompson CB.Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033. [64] Warburg O.On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. [65] Warburg O, Posener K, Negelein E.Über den stoffwechsel der carcinomzelle[J]. Naturwissenschaften, 1924, 12(50): 1131-1137. [66] Vayalil PK, Landar A.Mitochondrial oncobioenergetic index: A potential biomarker to predict progression from indolent to aggressive prostate cancer[J]. Oncotarget, 2015, 6(40): 43065-43080. [67] Reinicke K, Sotomayor P, Cisterna P, et al.Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue[J]. J Cell Biochem, 2012, 113(2): 553-562. [68] Garlapati C, Joshi S, Turaga RC, et al.Monoethanolamine-induced glucose deprivation promotes apoptosis through metabolic rewiring in prostate cancer[J]. Theranostics, 2021, 11(18): 9089-9106. [69] Liao Y, Guo Z, Xia X, et al.Inhibition of EGFR signaling with Spautin-1 represents a novel therapeutics for prostate cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 157. [70] Gonzalez-Menendez P, Hevia D, Alonso-Arias R, et al.GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress[J]. Redox Biol, 2018, 17: 112-127. [71] Carreño DV, Corro NB, Cerda-Infante JF, et al.Dietary Fructose Promotes Prostate Cancer Growth[J]. Cancer Res, 2021, 81(11): 2824-2832. [72] Lee HJ, Li CF, Ruan D, et al.Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion[J]. Nat Commun, 2019, 10(1): 2625. [73] Xu H, Li YF, Yi XY, et al.ADP-dependent glucokinase controls metabolic fitness in prostate cancer progression[J]. Mil Med Res, 2023, 10(1): 64. [74] Xu C, Tsai YH, Galbo PM, et al.Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer[J]. Nucleic Acids Res, 2021, 49(9): 4971-4988. [75] Liu J, Chen G, Liu Z, et al.Aberrant FGFR Tyrosine Kinase Signaling Enhances the Warburg Effect by Reprogramming LDH Isoform Expression and Activity in Prostate Cancer[J]. Cancer Res, 2018, 78(16): 4459-4470. [76] Lian C, Zhang C, Tian P, et al.Epigenetic reader ZMYND11 noncanonical function restricts HNRNPA1-mediated stress granule formation and oncogenic activity[J]. Signal Transduct Target Ther, 2024, 9(1): 258. [77] Wang D, Du G, Chen X, et al.Zeb1-controlled metabolic plasticity enables remodeling of chromatin accessibility in the development of neuroendocrine prostate cancer[J]. Cell Death Differ, 2024, 31(6): 779-791. [78] Shangguan X, He J, Ma Z, et al.SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis[J]. Nat Commun, 2021, 12(1): 1812. [79] Jiang X, Guo S, Wang S, et al.EIF4A3-Induced circARHGAP29 Promotes Aerobic Glycolysis in Docetaxel-Resistant Prostate Cancer through IGF2BP2/c-Myc/LDHA Signaling[J]. Cancer Res, 2022, 82(5): 831-845. [80] Costello LC, Franklin RB.The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots[J]. Mol Cancer, 2006, 5: 17. [81] Chouhan S, Sawant M, Weimholt C, et al.TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability[J]. Autophagy, 2023, 19(3): 1000-1025. [82] Lee YG, Nam Y, Shin KJ, et al.Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer[J]. Cancer Lett, 2020, 471: 72-87. [83] Bader DA, Hartig SM, Putluri V, et al.Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer[J]. Nat Metab, 2019, 1(1): 70-85. [84] Giafaglione JM, Crowell PD, Delcourt AML, et al.Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment[J]. Nat Cell Biol, 2023, 25(12): 1821-1832. [85] Hensley CT, Wasti AT, Deberardinis RJ.Glutamine and cancer: cell biology, physiology, and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684. [86] Wise DR, Deberardinis RJ, Mancuso A, et al.Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci USA, 2008, 105(48): 18782-18787. [87] Kodama M, Oshikawa K, Shimizu H, et al.A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer[J]. Nat Commun, 2020, 11(1): 1320. [88] Abu Aboud O, Habib SL, Trott J, et al.Glutamine Addiction in Kidney Cancer Suppresses Oxidative Stress and Can Be Exploited for Real-Time Imaging[J]. Cancer Res, 2017, 77(23): 6746-6758. [89] Gao P, Tchernyshyov I, Chang TC, et al.c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239): 762-765. [90] Mukha A, Kahya U, Linge A, et al.GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy[J]. Theranostics, 2021, 11(16): 7844-7868. [91] Wang Q, Li Z, Yang J, et al.Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer[J]. Cancer Biol Med, 2021, 19(8): 1193-1210. [92] Xu L, Yin Y, Li Y, et al.A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer[J]. Proc Natl Acad Sci USA, 2021, 118(13): e2012748118. [93] Yoo YA, Quan S, Yang W, et al.Asparagine Dependency is a Targetable Metabolic Vulnerability in TP53-Altered Castration-Resistant Prostate Cancer[J]. Cancer Res, 2024,84(18):3004-3022. [94] Luo T, Hu J, Cheng B, et al.Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study[J]. World J Mens Health, 2024.doi: 10.5534/wjmh.240061. Online ahead of print. [95] Reina-Campos M, Linares JF, Duran A, et al. Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer [J]. Cancer Cell, 2019, 35(3): 385-400. e9. [96] Chen CL, Hsu SC, Chung TY, et al.Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells[J]. Nat Commun, 2021, 12(1): 2398. [97] Lu X, Fong KW, Gritsina G, et al.HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer[J]. Nat Genet, 2022, 54(5): 670-683. [98] Li B, Cheng B, Huang H, et al.Darolutamide-mediated phospholipid remodeling induces ferroptosis through the SREBP1-FASN axis in prostate cancer[J]. Int J Biol Sci, 2024, 20(12): 4635-4653. [99] Zhang Y, Chen XN, Zhang H, et al.CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA[J]. Cell Death Differ, 2023, 30(12): 2462-2476. [100] Centenera MM, Scott JS, Machiels J, et al.ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer[J]. Cancer Res, 2021, 81(7): 1704-1718. [101] Penfold L, Woods A, Muckett P, et al.CAMKK2 Promotes Prostate Cancer Independently of AMPK via Increased Lipogenesis[J]. Cancer Res, 2018, 78(24): 6747-6761. [102] Gordon JA, Noble JW, Midha A, et al.Upregulation of Scavenger Receptor B1 Is Required for Steroidogenic and Nonsteroidogenic Cholesterol Metabolism in Prostate Cancer[J]. Cancer Res, 2019, 79(13): 3320-3331. [103] Kalogirou C, Linxweiler J, Schmucker P, et al.MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer[J]. Nat Commun, 2021, 12(1): 5066. [104] Quail DF, Joyce JA.Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11): 1423-1437. [105] Chaudagar K, Hieromnimon HM, Kelley A, et al.Suppression of Tumor Cell Lactate-generating Signaling Pathways Eradicates Murine PTEN/p53-deficient Aggressive-variant Prostate Cancer via Macrophage Phagocytosis[J]. Clin Cancer Res, 2023, 29(23): 4930-4940. [106] Chaudagar K, Hieromnimon HM, Khurana R, et al.Reversal of Lactate and PD-1-mediated Macrophage Immunosuppression Controls Growth of PTEN/p53-deficient Prostate Cancer[J]. Clin Cancer Res, 2023, 29(10): 1952-1968. [107] Xiao H, Du X, Tao Z, et al.Taurine Inhibits Ferroptosis Mediated by the Crosstalk between Tumor Cells and Tumor-Associated Macrophages in Prostate Cancer[J]. Adv Sci (Weinh), 2024, 11(3): e2303894. [108] El-Kenawi A, Dominguez-Viqueira W, Liu M, et al.Macrophage-Derived Cholesterol Contributes to Therapeutic Resistance in Prostate Cancer[J]. Cancer Res, 2021, 81(21): 5477-5490. [109] Ippolito L, Comito G, Parri M, et al.Lactate Rewires Lipid Metabolism and Sustains a Metabolic-Epigenetic Axis in Prostate Cancer[J]. Cancer Res, 2022, 82(7): 1267-1282. [110] Fiaschi T, Marini A, Giannoni E, et al.Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay[J]. Cancer Res, 2012, 72(19): 5130-5140. [111] Ippolito L, Duatti A, Iozzo M, et al.Lactate supports cell-autonomous ECM production to sustain metastatic behavior in prostate cancer[J]. EMBO Rep, 2024, 25(8): 3506-3531. [112] Ippolito L, Morandi A, Taddei ML, et al.Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer[J]. Oncogene, 2019, 38(27): 5339-5355. [113] Linares JF, Cordes T, Duran A, et al. ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma [J]. Cell Metab, 2017, 26(6): 817-829.e6. [114] Mishra R, Haldar S, Placencio V, et al.Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming[J]. J Clin Invest, 2018, 128(10): 4472-4484. [115] Neuwirt H, Bouchal J, Kharaishvili G, et al.Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis[J]. Cell Commun Signal, 2020, 18(1): 11. [116] Cui D, Li J, Zhu Z, et al.Cancer-associated fibroblast-secreted glucosamine alters the androgen biosynthesis program in prostate cancer via HSD3B1 upregulation[J]. J Clin Invest, 2023, 133(7). [117] Xu F, Wang X, Huang Y, et al.Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8(+) T cell[J]. Cell Rep, 2023, 42(11): 113424. [118] Liu Z, Liu W, Wang W, et al.CPT1A-mediated fatty acid oxidation confers cancer cell resistance to immune-mediated cytolytic killing[J]. Proc Natl Acad Sci U S A, 2023, 120(39): e2302878120. [119] Sadeghi RN, Karami-Tehrani F, Salami S.Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes[J]. Tumour Biol, 2015, 36(4): 2893-2905. [120] Uo T, Ojo KK, Sprenger CCT, et al.A Compound That Inhibits Glycolysis in Prostate Cancer Controls Growth of Advanced Prostate Cancer[J]. Mol Cancer Ther, 2024, 23(7): 973-994. [121] Choi SYC, Ettinger SL, Lin D, et al.Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer[J]. Cancer Med, 2018, 7(7): 3385-3392. [122] Li C, He C, Xu Y, et al.Alternol eliminates excessive ATP production by disturbing Krebs cycle in prostate cancer[J]. Prostate, 2019, 79(6): 628-639. [123] Zaidi S, Gandhi J, Joshi G, et al.The anticancer potential of metformin on prostate cancer[J]. Prostate Cancer Prostatic Dis, 2019, 22(3): 351-361. [124] Pujalte-Martin M, Belaïd A, Bost S, et al.Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759[J]. Mol Oncol, 2024, 18(7): 1719-1738. [125] Naguib A, Mathew G, Reczek CR, et al.Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells[J]. Cell Rep, 2018, 23(1): 58-67. [126] Wang Q, Guan YF, Hancock SE, et al.Inhibition of guanosine monophosphate synthetase (GMPS) blocks glutamine metabolism and prostate cancer growth[J]. J Pathol, 2021, 254(2): 135-146. [127] Zacharias NM, Mccullough C, Shanmugavelandy S, et al.Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer[J]. Sci Rep, 2017, 7(1): 16159. [128] Chuang HY, Lee YP, Lin WC, et al.Fatty Acid Inhibition Sensitizes Androgen-Dependent and -Independent Prostate Cancer to Radiotherapy via FASN/NF-κB Pathway[J]. Sci Rep, 2019, 9(1): 13284. [129] Heuer TS, Ventura R, Mordec K, et al.FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression[J]. EBioMedicine, 2017, 16: 51-62. [130] Rae C, Fragkoulis GI, Chalmers AJ.Cytotoxicity and Radiosensitizing Activity of the Fatty Acid Synthase Inhibitor C75 Is Enhanced by Blocking Fatty Acid Uptake in Prostate Cancer Cells[J]. Adv Radiat Oncol, 2020, 5(5): 994-1005. [131] Nagesh PKB, Chowdhury P, Hatami E, et al.Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells[J]. Sci Rep, 2020, 10(1): 980. [132] Shangguan X, Ma Z, Yu M, et al.Squalene Epoxidase Metabolic Dependency Is a Targetable Vulnerability in Castration-Resistant Prostate Cancer[J]. Cancer Res, 2022, 82(17): 3032-3044. [133] Guo S, Ma B, Jiang X, et al.Astragalus Polysaccharides Inhibits Tumorigenesis and Lipid Metabolism Through miR-138-5p/SIRT1/SREBP1 Pathway in Prostate Cancer[J]. Front Pharmacol, 2020, 11: 598. |
| [1] | 王荣悦, 苏延泽, 陈二宝, 刘吉奎. 鞘磷脂酶在消化道恶性肿瘤中的研究进展[J]. 岭南现代临床外科, 2023, 23(03): 263-268. |
| [2] | 范辉阳, 赖义明, 周杰, 陈勇明, 唐晨, 李凌峰, 吴永鑫, 郭正辉. RAI14高表达促进前列腺癌骨转移并与不良预后相关[J]. 岭南现代临床外科, 2023, 23(02): 127-134. |
| [3] | 管玉婷, 曾国斌, 陈建平, 吴雄健. 预防高危因素患者肝癌切除术后复发的治疗进展[J]. 岭南现代临床外科, 2023, 23(02): 193-199. |
| [4] | 李金, 赖义明, 曾乐祥. 沉默前列腺特异性膜抗原促进前列腺癌LNCAP细胞上皮-间质转化及迁移、侵袭的研究[J]. 岭南现代临床外科, 2023, 23(01): 58-63. |
| [5] | 王忠辉, 陈国林, 苏树英. 安罗替尼联合信迪利单抗治疗复发性胆管癌1例[J]. 岭南现代临床外科, 2022, 22(06): 582-587. |
| [6] | 李金, 李凌峰, 赖义明. 基于数据库挖掘分析GPX4在前列腺癌中的表达及意义[J]. 岭南现代临床外科, 2022, 22(05): 503-508. |
| [7] | 宋鸿文, 王继鑫, 阿斯木江·阿不拉, 王玉杰, 王文光. 前列腺癌根治术后Gleason评分升级的影响因素分析(基于2014版ISUP分组)[J]. 岭南现代临床外科, 2022, 22(04): 378-383. |
| [8] | 徐圣善, 王志刚, 卢珠明. 蛋白质糖基化在肺癌发生发展中的作用[J]. 岭南现代临床外科, 2022, 22(04): 428-432. |
| [9] | 王小娟, 黄雨娜, 姚伟城, 浮钰, 岑美凤. 肿瘤微环境的旁分泌型低丰度蛋白组检测的新液质联用方法[J]. 岭南现代临床外科, 2022, 22(03): 236-244. |
| [10] | 周炳坤, 王博, 贺情情, 黄孝东, 陈俊宇, 黄健. 膀胱癌免疫治疗相关肿瘤微环境及其在人和小鼠肿瘤中的组成特征初探[J]. 岭南现代临床外科, 2022, 22(02): 143-153. |
| [11] | 林杏仪, 田振烽, 潘乐乐, 苏铭昕, 陈茵婷. 基于GEO数据库的胰腺癌循环肿瘤细胞代谢通路及关键基因研究[J]. 岭南现代临床外科, 2022, 22(01): 34-41. |
| [12] | 黄沾任, 宁金月, 李汉卿, 陈念平. 免疫联合靶向治疗在晚期肝癌转化治疗中的研究进展[J]. 岭南现代临床外科, 2022, 22(01): 110-114. |
| [13] | 冯惠仪, 吴明玮. 非小细胞肺癌EGFR罕见突变及其靶向与免疫治疗策略[J]. 岭南现代临床外科, 2021, 21(04): 482-488. |
| [14] | 刘少儒, 黄贻培, 裴晓珊, 许磊波. 肝脏神经内分泌肿瘤35例临床病理分析[J]. 岭南现代临床外科, 2021, 21(02): 157-164. |
| [15] | 陈秀凤, 卜庆丰, 张杰. 基于多参数磁共振成像的PI-RADS第二版评分联合f/t PSA及PSAD在前列腺癌早期筛查中的预测价值[J]. 岭南现代临床外科, 2021, 21(02): 213-216. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||