[1] Kahle KT, Klinge PM, Koschnitzky JE, et al.Paediatric hydrocephalus[J]. Nat Rev Dis Primers, 2024, 10(1): 35. [2] Carswell C.Idiopathic normal pressure hydrocephalus: historical context and a contemporary guide[J]. Pract Neurol, 2023, 23(1): 15-22. [3] Ho YJ, Chiang WC, Huang HY, et al.Effectiveness and safety of ventriculoperitoneal shunt versus lumboperitoneal shunt for communicating hydrocephalus: A systematic review and meta-analysis with trial sequential analysis[J]. CNS Neurosci Ther, 2023, 29(3): 804-815. [4] Karimy JK, Reeves BC, Damisah E, et al.Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets[J]. Nat Rev Neurol, 2020, 16(5): 285-296. [5] Wang Q, Cheng J, Liu F, et al.Modulation of Cerebrospinal Fluid Dysregulation via a SPAK and OSR1 Targeted Framework Nucleic Acid in Hydrocephalus[J]. Adv Sci (Weinh), 2024, 11(17): e2306622. [6] Braun M, Boström G, Ingelsson M, et al.Levels of inflammatory cytokines MCP-1, CCL4, and PD-L1 in CSF differentiate idiopathic normal pressure hydrocephalus from neurodegenerative diseases[J]. Fluids Barriers CNS, 2023, 20(1): 72. [7] Kumar R, Theiss AL, Venuprasad K.RORγt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol, 2021, 42(11): 1037-1050. [8] Kogut MH, Lee A, Santin E.Microbiome and pathogen interaction with the immune system[J]. Poult Sci, 2020, 99(4): 1906-1913. [9] Zhao J, Weng X, Bagchi S, et al.Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response[J]. Proc Natl Acad Sci USA, 2014, 111(7): 2674-9. [10] Liu M, Wu K, Lin J, et al.Emerging Biological Functions of IL-17A: A New Target in Chronic Obstructive Pulmonary Disease?[J]. Front Pharmacol, 2021, 12: 695957. [11] Navarro-Compán V, Puig L, Vidal S, et al.The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases[J]. Front Immunol, 2023, 14: 1191782. [12] Isailovic N, Daigo K, Mantovani A, et al.Interleukin-17 and innate immunity in infections and chronic inflammation[J]. J Autoimmun, 2015, 60: 1-11. [13] Dai Q, Han S, Liu T, et al.IL-17A Neutralization Improves the Neurological Outcome of Mice With Ischemic Stroke and Inhibits Caspase-12-Dependent Apoptosis[J]. Front Aging Neurosci, 2020, 12: 274. [14] Hu Y, Zheng Y, Wu Y, Ni B, Shi S.Imbalance between IL-17A-producing cells and regulatory T cells during ischemic stroke[J]. Mediators Inflamm, 2014, 2014:813045. [15] Cao Y, Yu Y, Xue B, et al.IL (Interleukin)-17A Acts in the Brain to Drive Neuroinflammation, Sympathetic Activation, and Hypertension[J]. Hypertension, 2021, 78(5): 1450-1462. [16] Piepke M, Clausen BH, Ludewig P, et al.Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response[J]. J Neuroinflammation, 2021, 18(1): 265. [17] Gelderblom M, Weymar A, Bernreuther C, et al.Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke[J]. Blood, 2012, 120(18): 3793-802. [18] Levraut M, Bourg V, Capet N, et al.Cerebrospinal Fluid IL-17A Could Predict Acute Disease Severity in Non-NMDA-Receptor Autoimmune Encephalitis[J]. Front Immunol, 2021, 12: 673021. [19] Huppert J, Closhen D, Croxford A, et al.Cellular mechanisms of IL-17-induced blood-brain barrier disruption[J]. FASEB J, 2010, 24(4): 1023-1034. |