欢迎访问《岭南现代临床外科》官方网站,今天是

岭南现代临床外科 ›› 2025, Vol. 25 ›› Issue (06): 367-374.DOI: 10.3969/j.issn.1009-976X.2025.06.004

• 论著与临床研究 • 上一篇    下一篇

构建多参数MRI影像组学模型预测肝细胞癌组织分化程度

曾佳乐, 奉鑫, 徐啟业, 王智慧*   

  1. 中山大学孙逸仙纪念医院放射科,广州 510120
  • 通讯作者: *王智慧,Email:wangzhh57@mail.susy.edu.cn
  • 基金资助:
    广东省医学科学技术研究基金项目(A2023104)

A multiparametric MRI-based radiomics model for the preoperative prediction of histological differentiation in hepatocellular carcinoma

ZENG Jia-le, FENG Xin, XU Qi-ye, WANG Zhi-hui   

  1. Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2025-10-11 Online:2025-12-20 Published:2026-01-28
  • Contact: WANG Zhi-hui, wangzhh57@mail.susy.edu.cn

摘要: 目的 基于多参数MRI影像组学模型,评估其在术前无创预测肝细胞癌(HCC)组织学分化程度中的价值。方法 回顾性分析2022年9月至2024年12月中山大学孙逸仙纪念医院206例术后病理证实为HCC的患者资料,按Edmondson-Steiner(E-S)分级分为高级别组(n=57)和低级别组(n=149),并以7∶3比例随机分为训练集(n=144)和验证集(n=62)。临床预测因子通过单因素和多因素分析进行筛选,影像组学特征依次经单因素分析、最大相关最小冗余(mRMR)及最小绝对收缩和选择算子(LASSO)进行选择。采用Logistic回归建立预测模型,受试者工作特征曲线(ROC)和曲线下面积(AUC)评估模型性能,DeLong检验比较模型间AUC值差异,校准曲线和Hosmer-Lemeshow检验评估模型校准度。结果 多参数影像组学联合模型(Comb_Rad)在训练集和验证集中的AUC分别为0.904、0.886,且在验证集上显著优于所有单一参数影像组学模型(DeLong检验:均P<0.05)。进一步整合临床指标的Rad_Clin模型表现最佳,训练集和验证集AUC分别为0.933、0.902。Rad_Clin与Comb_Rad模型在训练集中的差异具有统计学意义(P= 0.047),且两者在训练集和验证集中均显著优于临床模型(Clin,均P<0.05)。Rad_Clin模型具有良好的拟合度 (训练集P=0.905,验证集P=0.853)。结论 基于多参数 MRI 的影像组学联合模型能够有效预测HCC组织分化程度,进一步融合临床指标可提升预测性能。

关键词: 肝细胞癌, 分化程度, 磁共振成像, 影像组学

Abstract: Objective To develop a multiparametric MRI-based radiomics model for the preoperative noninvasive prediction of histological differentiation in hepatocellular carcinoma (HCC). Methods A total of 206 patients with pathologically confirmed HCC who underwent surgical resection at Sun Yat-sen Memorial Hospital between September 2022 and December 2024 were retrospectively enrolled. Patients were classified into high-grade (n=57) and low-grade (n=149) groups based on the Edmondson-Steiner grading system and were then randomly assigned to training (n=144) and validation (n=62) cohorts at a ratio of 7∶3. Clinical predictors were identified through univariate and multivariate logistic regression analysis. Radiomics features were extracted from multiparametric MRI images and selected by applying univariate logistic regression analysis, maximum relevance minimum redundancy (mRMR), and least absolute shrinkage and selection operator (LASSO) algorithms. Predictive models were developed using logistic regression. Model performance was evaluated by the receiver operating characteristic (ROC) curves and area under the curve (AUC). The DeLong test was employed to compare AUC values. Calibration curves and the Hosmer-Lemeshow test were used to evaluate the model's calibration. Results The combined radiomics model (Comb_Rad) achieved AUCs of 0.904 and 0.886 in the training and validation cohorts, significantly outperformed all single-parameter radiomics models in the validation cohort (all P<0.05, DeLong test). The radiomics-clinical combined model (Rad_Clin) achieved the best performance, with AUCs of 0.933 in the training cohort and 0.902 in the validation cohort. The Rad_Clin model demonstrated significantly better performance than the Comb_Rad model in the training cohort (P=0.047), while both models significantly outperformed the clinical model (Clin) in both cohorts (all P<0.05). Additionally, the Rad_Clin model demonstrated good fit (training cohort P=0.905, test cohort P=0.853). Conclusion A multiparametric MRI-based radiomics model can effectively predict the histological differentiation of HCC, and the integration of clinical factors further improves predictive performance.

Key words: hepatocellular carcinoma, differentiation, magnetic resonance imaging, radiomics

中图分类号: